
 Introduction to S-Plus 1

Topics for today

• Input / Output

• Using data frames

• Mathematics with vectors and matrices

• Summary statistics

• Basic graphics

 Introduction to S-Plus 2

Input:

Data files

For rectangular data files (n rows, c columns) you
usually want to use read.table().

read.table(file, header = F, sep = "",
 row.names = NULL,
 col.names = paste("V", 1:fields, sep = ""),
 as.is = F, na.strings = "NA", skip = 0)

The arguments you are normally going to wanted to
deal with are header, and sep.

header

logical flag: if TRUE, then the first line of the file
is used as the variable names of the resulting
data frame. The default is FALSE, unless there is
one less field in the first line of the file than in the
second line.

sep

the field separator (single character), often `"\t"' for
tab. If omitted, any amount of white space (blanks
or tabs) can separate fields. To read fixed format
files, make sep a numeric vector giving the initial
columns of the fields.

 Introduction to S-Plus 3

If the data file doesn’t have as nice structure as
required for read.table, you probably want to use
scan instead.

scan(file="", what=numeric(), n=<<see below>>,
 sep=<<see below>>, multi.line=F, flush=F,
 append=F, skip=0, widths=NULL,
 strip.white=<<see below>>)

The important arguments, besides file, are what,
sep and flush

what

a vector of mode numeric, character, or complex,
or a list of vectors of these modes. Objects of
mode logical are not allowed. If what is a
numeric, character, or complex vector, scan
will interpret all fields on the file as data of the
same mode as that object. So,
what=character() or what="" causes scan to
read data as character fields. If what is missing,
scan will interpret all fields as numeric.

If what is a list, then each record is considered to
have length(what) fields and the mode of each
field is the mode of the corresponding component
in what. When widths is given as a vector of
length greater than one, what must be a list of
the same length as widths.

 Introduction to S-Plus 4

sep

separator (single character), often `"\t"' for tab or
`"\n"' for newline. If omitted, any amount of white
space (blanks, tabs, and possibly newlines) can
separate fields. If widths is specified, then sep
tells what separator to insert into fixed-format
records.

flush

if TRUE, scan will flush to the end of the line
after reading the last of the fields requested. This
allows putting comments after the last field that
are not read by scan, but also prevents putting
multiple sets of items on one line.

While data files in text format are extremely common,
you may need to deal with data coming from other
packages, such as SAS, Excel, SPSS, etc. These can
be read in with sas.get for SAS and importData for
many packages, including Excel and SPSS. Note
that the version of importData in version 5.1 will
often limit the versions of the data files in the other
programs. For example, Excel files must be from
version 4 or earlier. It appears that the same or
similar restructions hold for version 6 as well.

 Introduction to S-Plus 5

Exporting S data

Most of the functions mentioned earlier have
counterparts for exporting your S data to other
programs. Since text files are usually the easiest to
work with, wr i t e. t abl e is the one you will use the
most.
wr i t e. t abl e(dat a, f i l e = " " , sep = " , " , append = F,
 quot e. st r i ngs = F, di mnames. wr i t e = T, na = NA,
 end. of . r ow = " \ n")

Its arguments are similar to read.table. One change
I suggest is to give a sep argument and not use the
default of ‘” , ” ’. Instead I would use a space ‘” “ ’, or
a tab ‘” \ t ” ’, as it will be easier to read into a
program such as Excel.

The counterpart to scan is wr i t e.

wr i t e(x, f i l e=" dat a" , ncol umns=<<see bel ow>>,
 append=F)

Usually I think that write.table is the way to go, Also
you need to be careful with the default for ncolumns.

ncol umns

number of data items to put on each line of file.
Default is 5 per line for numeric data, 1 per line
for character data.

 Introduction to S-Plus 6

i mpor t Dat a also has its counterpart for exporting
data. Not surprisingly its expor t Dat a. Also this is
the only way to export SAS files as I can’t find the
counterpart to sas. get .

Running scripts

Like with unix, it is possible to write scripts of S
commands, instead of having to type the commands
in one by one at the prompt. As part of my example
last week, I read in a dataset, generated some plots
and created some new variables.

car s<- r ead. t abl e(“ / home/ i r wi n/ Scour se/ 93car s. dat ” ,
 header =T, r ow. names=NULL)

post scr i pt (" c i t ympg. ps" , hor i z=T)
pl ot (car s. df $wei ght , car s. df $ci t ympg, x l ab=" Wei ght " ,
 y l ab=" Ci t yMPG" , mai n=" Ci t y MPG ver sus Wei ght ")
abl i ne(l sf i t (car s. df $wei ght , car s. df $ci t ympg))
dev. of f ()

car s. df $ci t yf uel <- 100/ car s. df $ci t ympg

post scr i pt (" c i t yf uel . ps" , hor i z=T)
pl ot (car s. df $wei ght , car s. df $ci t yf uel , x l ab=" Wei ght " ,
 y l ab=" Ci t yFuel " , mai n=" Ci t y Fuel ver sus Wei ght ")
abl i ne(l sf i t (car s. df $wei ght , car s. df $ci t yf uel))
dev. of f ()

 Introduction to S-Plus 7

When I did it, I just typed in the command.
However, I might have wanted to redo these
commands another time. With the sour ce function,
its easy to run scripts.

Assume the above commands are in a file
testscript.s. Then the command
sour ce(‘ t est scr i pt . s ’) will run the commands in
the above file and return you to the S prompt.
sour ce(f i l e, l ocal =F, echo=<<see bel ow>>, n = - 1,
 i mmedi at e = NULL)

The important argument for source is echo. It
determines the amount of output generated by the
sour ce command

echo

if TRUE, each expression will be printed, along with a
prompt, before it is evaluated. The default is TRUE if
opt i ons(echo=T) has been set and
l engt h(r ecor dConnect i on()) ==0.

 Introduction to S-Plus 8

For example,
> source('testscript.s')

Generated postscript file "citympg.ps".

Generated postscript file "cityfuel.ps".

> source('testscript.s',echo=T)

>cars.df<-read.table("/home/irwin/Scourse/93cars.dat",
 header = T, row.names = NULL)

> postscript("citympg.ps", horiz = T)

> plot(cars.df$weight, cars.df$citympg, xlab =
 "Weight", ylab = "CityMPG",
 main = "City MPG versus Weight")

> abline(lsfit(cars.df$weight, cars.df$citympg))

> dev.off()

Generated postscript file "citympg.ps".

> cars.df$cityfuel <- 100/cars.df$citympg

> postscript("cityfuel.ps", horiz = T)

> plot(cars.df$weight, cars.df$cityfuel,
 xlab = "Weight", ylab = "CityFuel",
 main = "City Fuel versus Weight")

> abline(lsfit(cars.df$weight, cars.df$cityfuel))

> dev.off()

Generated postscript file "cityfuel.ps".

 Introduction to S-Plus 9

Another use of script files is for running long jobs in
the background. To do this, give the command at
the unix prompt

SPlus BATCH inputfile outputfile

This command will run the script contained in
inputfile and write the output to outputfile,
returning you to the unix prompt while the script is
running. The contents for outputfile will look
exactly like what you would get on the screen if you
typed the commands in yourself.

Saving output:

Besides running a job in the background, which will
automatically save all of your output to a file, you
can also do it from the S prompt with the sink
command.
> summary(cars.df$citympg)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 15.00 18.00 21.00 22.37 25.00 46.00

> sink('sinktest.out')

> summary(cars.df$citympg)

> sink()

> summary(cars.df$citympg)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 15.00 18.00 21.00 22.37 25.00 46.00

>

 Introduction to S-Plus 10

Using data frames

If you use the most common approach for reading in
data, read.table, you end up with a data frame. As
we saw last time one way to access the entries of a
data frame was to do something like
cars.df$citympg. However there are different ways
of accessing the components of a data frame.

Treat it like a matrix
> simple.df<-data.frame(norm=rnorm(5,2,0.5),
 chi=rchisq(5,3))

> objects(simple.df)

[1] "chi" "norm"

> simple.df

 norm chi

1 2.742964 9.488857

2 1.945042 2.252652

3 2.120086 1.705713

4 2.438854 1.738452

5 2.111714 5.695775

 Introduction to S-Plus 11

So instead of accessing the chi-squared column with
simple.df$chi, you can also use simple.df[,2].

> simple.df$chi

[1] 9.488857 2.252652 1.705713 1.738452 5.695775

> simple.df[,2]

[1] 9.488857 2.252652 1.705713 1.738452 5.695775

> simple.df[,'chi']

[1] 9.488857 2.252652 1.705713 1.738452 5.695775

Attaching the data frame

This allows you to access the variables in the data
frame without having to specify which data frame
contains the variables. Note that if you attach two
data frames at the same time, and they both have a
variable with the same name, you will only be able to
access one of them (the one higher in the search list)
by just giving the variable name.

 Introduction to S-Plus 12

> search()

[1] ".Data" "splus" "stat" "data" "trellis" "main"

> chi

Problem: Object "chi" not found

> simple.df$chi

[1] 9.488857 2.252652 1.705713 1.738452 5.695775

> attach(simple.df)

> search()

[1] ".Data" "simple.df" "splus" "stat" "data"
[6] "trellis" "main"

> chi

 1 2 3 4 5
 9.488857 2.252652 1.705713 1.738452 5.695775

> simple.df$chi

 1 2 3 4 5
 9.488857 2.252652 1.705713 1.738452 5.695775

> chi<-chi*2

> ls()

 [1] ".Last.value" ".Random.seed" "cars.df" "chi"
 [5] "iris3" "last.dump" "simple.df"
 [8] "u" "v" "w"

 Introduction to S-Plus 13

> chi

 1 2 3 4 5
 18.97771 4.505304 3.411426 3.476903 11.39155

> simple.df$chi

 1 2 3 4 5
 9.488857 2.252652 1.705713 1.738452 5.695775

If I remove simple.df from the search path with
detach

> detach(what="simple.df")

NULL

> chi

 1 2 3 4 5

 18.97771 4.505304 3.411426 3.476903 11.39155

> simple.df$chi

[1] 9.488857 2.252652 1.705713 1.738452 5.695775

The changes made to chi don’t get updated in the
data frame.

 Introduction to S-Plus 14

Lets reset things
> ls()

[1] ".Last.value" ".Random.seed" "cars.df"
[4] "iris3" "last.dump" "simple.df"
[7] "u" "v" "w"

> attach(simple.df,1)

> search()

[1] "simple.df" ".Data" "splus" "stat" "data"
[6] "trellis" "main"

> chi<-chi*2

> detach(1,save="simple2.df")

This should save the updated version of chi to
simple.df. Unfortunately something isn’t working
right with Splus. Instead for now use
> simple.df$chi <- simple.df$chi *2.

> attach(simple.df)

> summary(norm)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.945 2.112 2.120 2.272 2.439 2.743

> summary(simple.df$norm)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.945 2.112 2.120 2.272 2.439 2.743

> summary(chi)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.706 1.738 2.253 4.176 5.696 9.489

 Introduction to S-Plus 15

Even when a data frame is attached, you can still
access it the other way I’ve been talking about.
> summary(simple.df)

 norm chi

 Min.:1.945 Min.:1.706

 1st Qu.:2.112 1st Qu.:1.738

 Median:2.120 Median:2.253

 Mean:2.272 Mean:4.176

 3rd Qu.:2.439 3rd Qu.:5.696

 Max.:2.743 Max.:9.489

 Introduction to S-Plus 16

Creating Matrices

There are a number of ways of creating matrices in S.
First you can treat a data frame as a matrix as we’ve
seen (though I just had a problem with it). You
might want to do something like
simple.mat <- as.matrix(simple.df)

There is the matrix function
matrix(data=NA, nrow=<<see below>>,
 ncol=<<see below>>, byrow=F, dimnames=NULL)

Data is a numeric vector, with NAs allowed. You only
need to give one of the nrow and by ncol arguments
(but giving both is ok). The important argument is
probably byrow.

byrow

logical flag: if TRUE, the data values are assumed
to be the first row, then the second row, etc. If
FALSE, the values are assumed to be the first
column, then the second column, etc. (The latter
is how the data are stored internally.)

 Introduction to S-Plus 17

> matrix(1:6,ncol=3)

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(1:6,ncol=3,byrow=T)

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> matrix(1:6,nrow=2,byrow=T)

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> matrix(1:6,nrow=2,ncol=6,byrow=T)

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 2 3 4 5 6

[2,] 1 2 3 4 5 6

 Introduction to S-Plus 18

You can also combine vectors and matrices to make
bigger ones with cbind and rbind

> X <- matrix(1:6,ncol=3)

> X

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> Y <- matrix(1:6,ncol=3,byrow=T)

> Y

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> cbind(X,Y)

 [,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 3 5 1 2 3

[2,] 2 4 6 4 5 6

> rbind(X,Y)

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

[3,] 1 2 3

[4,] 4 5 6

 Introduction to S-Plus 19

These two commands also work with vectors (or
vectors and matrices)
> cbind(rep(1,5),1:5)

 [,1] [,2]

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

> rbind(rep(1,5),1:5)

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 1 1 1 1

[2,] 1 2 3 4 5

 Introduction to S-Plus 20

Matrix and vector math
> x<-1:5

> y<-seq(2,10,2) > x

[1] 1 2 3 4 5

> y

[1] 2 4 6 8 10

> x+y

[1] 3 6 9 12 15

> x*y

[1] 2 8 18 32 50

> X+Y

 [,1] [,2] [,3]

[1,] 2 5 8

[2,] 6 9 12

> X*Y

 [,1] [,2] [,3]

[1,] 1 6 15

[2,] 8 20 36

 Introduction to S-Plus 21

Matrix multiplication is done with %*%. Also to get
the transpose of a matrix, use the t() function.

> X %*% Y

Problem in "%*%.default"(X, Y): Number of columns of x
should be the same as number of rows of y

Use traceback() to see the call stack

> t(X) %*% Y

 [,1] [,2] [,3]

[1,] 9 12 15

[2,] 19 26 33

[3,] 29 40 51

Also the standard math functions work component
wise
> log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

> log(X)

 [,1] [,2] [,3]

[1,] 0.0000000 1.098612 1.609438

[2,] 0.6931472 1.386294 1.791759

 Introduction to S-Plus 22

Summary stats

Useful functions to get summary statistics are

mean, var, stdev, median, min, max, range,
quantile, and summary.

> mean(1:100)

[1] 50.5

> var(1:100)

 [1] 841.6667

> stdev(1:100)

[1] 29.01149

> median(1:100)

[1] 50.5

> quantile(1:100,seq(0,1,0.2))

 0% 20% 40% 60% 80% 100%
 1 20.8 40.6 60.4 80.2 100

> quantile(1:100)

 0% 25% 50% 75% 100%
 1 25.75 50.5 75.25 100

> quantile(1:100,c(0.3, 0.6, 0.9))

 30% 60% 90%
 30.7 60.4 90.1

> summary(1:100)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 25.75 50.50 50.50 75.25 100.00

 Introduction to S-Plus 23

Basic graphics

Stem and Leaf, Histograms, Boxplots, Scatterplots
> stem(cars.df$engsize)

N = 93 Median = 2.4

Quartiles = 1.8, 3.3

Decimal point is at the colon

 1 : 02333
 1 : 55555556666688888889
 2 : 000012222222222333333444
 2 : 5555888
 3 : 000000000002233444
 3 : 5588888888
 4 : 3
 4 : 56669
 5 : 0
 5 : 77

 Introduction to S-Plus 24

> hist(cars.df$engsize)

1 2 3 4 5 6

0
5

10
15

20

cars.df$engsize

 Introduction to S-Plus 25

> hist(cars.df$engsize,col=0,xlab="Engine Size")

1 2 3 4 5 6

0
5

10
15

20

Engine Size

 Introduction to S-Plus 26

> boxplot(split(citympg,cylinders))

15
20

25
30

35
40

45

* 3 4 5 6 8

 Introduction to S-Plus 27

plot(weight,engsize,pch=1,xlab="Weight",ylab="Engine
Size", main="93 Cars Dataset")

93
 C

ar
s

D
at

as
et

W
ei

gh
t

Engine Size

20
00

25
00

30
00

35
00

40
00

12345

 Introduction to S-Plus 28

If you don’t give and output device, the output will go
to the screen. The usual on screen graphic devices
are motif (Splus) and X11/x11 (R). Once you have
the plot the way you want it, you can create a
postscript file with the printgraph command.

> printgraph(file='boxplot.ps', width=6, height=5,
 horiz=F)

You can also choose the graphics driver and regive
the plot commands. For example, the boxplot could
have been created by
> postscript(file='boxplot.ps', width=6, height=5,
 horiz=F)

> boxplot(split(citympg,cylinders))

> dev.off()

The dev.off command is needed to indicate the
figure is finished and to save the file.

Other graphics devices are pdf.graph (pdf files),
wmf.graph (Windows metafile, version 6 or later of
Splus). In R there is pdf, xfig (a unix graphics
program), png (png bitmat), and jpeg.

