
 Models in S-Plus and R 1

Programming in S

Functions

Vectorized calculations vs loops

As we’ve seen S is a full featured, object-oriented
programming language. Previously I’ve shown how
you can write scripts and running them from within
S-Plus and R. Similarly, it is easy to write your own
functions in S-Plus/R

General structure of a function

function.name <- function(args) {

 commands

 function.output

}

 Models in S-Plus and R 2

Function arguments

As with any high level language, you need to give the
arguments to your function. Well sort of.

The argument list will usually be of the form

ar g1, ar g2, ar g3 = def aul t 3, ar g4 = def aul t 4 , …

As we’ve seen in the past, it is possible to give some
arguments default values, as has been done with
ar g3 and ar g4. The first two arguments, ar g1 and
ar g2, since they do not have default settings, they
must be given. In addition, it is possible to pass in
extra arguments that do not need to be specified
ahead of time with “…”.

The order that the arguments are listed is the order
expected when the function is called. For example

t est f un <- f unct i on(x, y)

 { x / y }

> t est f un(1, 2)

[1] 0. 5

> t est f un(2, 1)

[1] 2

> t est f un(y=2, x=1)

[1] 0. 5

 Models in S-Plus and R 3

> testfun(1)

Error in testfun(1) : Argument "y" is
missing, with no default

testfun2 <- function(x, y = 1, z)

 { x * y + z}

> testfun2(2,1,4)

[1] 6

> testfun2(2,z=4)

[1] 6

> testfun2(2,,4) # not recommended

[1] 6

 Models in S-Plus and R 4

Local vs global variables

Most of the time variables inside functions are
treated locally. That is, assignments made inside the
function do not affect what is stored

succ <- function(n){

 n <- n+1

 n

}

> n

[1] 2

> succ(n)

[1] 3

> n

[1] 2

When a function is called and it comes across
something that hasn’t been given as an argument or
defined earlier in the function it will go through the
search path until it finds the object

 Models in S-Plus and R 5

testfun3 <- function(x, y = 1, z)

 { x * y + z * n}

> testfun3(2,z=4)

[1] 10

While it does have its uses, it can be dangerous and
it is usually not recommended. Passing the values in
as arguments is usually the way to go.

In addition it possible for assignments not to be
local, but global. You can reassign values in the first
level of the search path from within a function. For
example

succ2 <- function(n){

 x <- n+1

 n <<- x

 x

}

> n

[1] 4

> succ2(n)

[1] 5

> n

[1] 5

 Models in S-Plus and R 6

This is very dangerous. DO NOT DO THIS!!!!!
Especially with any functions you might pass onto
somebody else. You might end up trashing some
object you need without realizing it.

Control structures (for, if, while, etc)

The standard control structures in most high level
languages are available in S-Plus/R. The include if
statements, for loops, while loops, etc

if:

The basic structure is

if (condition) true branch commands

 else false branch commands

For example
fact2<-function(x) {

 if(x != trunc(x)) {stop("x is not an integer")}

 else {

 fact<-1

 for(i in 1:x)

 fact<- fact * i

 }

 fact

}

 Models in S-Plus and R 7

In the if statement, the condition should be a single
logical value. If you are dealing with vectors, you
may not get what you want. An alternative in this
case is i f el se. For example

> y<- (- 1: 4)

> y l ogy <- i f el se(y<=0, 0, y* l og(y))

War ni ng message:

NaNs pr oduced i n: l og(x)

> y l ogy

[1] 0. 000000 0. 000000 0. 000000 1. 386294 3. 295837
5. 545177

swi t ch:

When there are more than 2 conditions that you
need to deal with, such as with

r esul t <- i f (t est == “ Levene”) l evene(y, f)

 el se

 i f (t est == “ Cochr an”) cochr an(y, f)

 el se bar t l et t (y, f)

it may be easier to deal with as
r esul t <- swi t ch(t est ,

 Levene = l evene(y, f)

 Cochr an = cochr an(y, f)

 Bar t l et t = Bar t l et t (y, f))

 Models in S-Plus and R 8

for:

The basic structure is

for (variable in sequence) commands

fact1<-function(x) {

 fact<-1

 for(i in 1:x)

 fact<- fact * i

 fact

}

Note that the sequence doesn’t have to be a vector.
It could be a list or a data frame, as with

> for (i in lcrabs)

+ print(summary(i))

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.974 2.557 2.744 2.720 2.893 3.140

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.872 2.398 2.549 2.523 2.660 3.006

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.688 3.306 3.469 3.443 3.617 3.863

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.839 3.450 3.605 3.570 3.738 4.000

 Models in S-Plus and R 9

while:

while (condition) commands

fact3 <- function(x) {

 fact <- 1; i <- 1

 while (i < x) {

 i <- i+1

 fact <- fact * i

 }

 fact}

repeat:

repeat commands

fact4 <- function(x) {

 fact <- 1; i <- 1

 repeat {

 i <- i+1

 fact <- fact * i

 if (i == x) break

 }

 fact}

The commands in the repeat loop will continue until
a break is seen which will hop you out of the loop.

 Models in S-Plus and R 10

Error checking

When writing functions, it is usually a good idea to
check to make sure the input arguments are value.
For example, with the factorial functions shown
before as all based on a single, integer being input.

facte <- function(x) {

 if (length(x)>1) warning("x should be of
length 1, only first component used")

 if (x[1] <= 0) stop("x must be positive")

 prod(1:x[1])

}

> facte(1:4)

[1] 1

Warning message:

x should be of length 1, only first component
used in: facte(1:4)

> facte(-2)

Error in facte(-2) : x must be positive

warning will allow the function to continue and
return output. stop, however will terminate the
function, yielding no output.

Printing output in functions

 Models in S-Plus and R 11

Sometimes it is useful to print results of calculations
from within a function, such as during debugging.

For example

testprint1 <- function(x) {

 for (i in 1:x)

 c(i, fact(i))

}

> testprint1(4)

>

You must explicitly print the objects as with

testprint2 <- function(x) {

 for (i in 1:x)

 print(c(i,fact(i)))

}

> testprint2(4)

[1] 1 1

[1] 2 2

[1] 3 6

[1] 4 24

 Models in S-Plus and R 12

The functions cat and format is also useful,
particularly with formatted output.

testprint3 <- function(x) {

 for (i in 1:x)

 cat("x = ",i,", ",i,"! = ",fact(i),"\n",
 sep="")

}

> testprint3(4)

x = 1, 1! = 1

x = 2, 2! = 2

x = 3, 3! = 6

x = 4, 4! = 24

 Models in S-Plus and R 13

Recursive functions

Another approach that can be useful is that of
recursive functions. For example, the factorial
function can be written as

 x! = x × (x – 1)!

This can be written as

factr <- function(x) {

 if(x != trunc(x))

 stop("x is not an integer")

 if (x == 1) factr <- 1

 else factr <- factr(x-1) * x

 factr

}

Note that this approach is usually slow and memory-
intensive. Each time the function is called, a copy of
the important information is made and passed onto
the new call. The function factr will only handle x up
to 82. With x � 83,

> factr(82)

[1] 4.753643e+122

> factr(83)

Error in factr(x - 1) : evaluation is nested too
deeply: infinite recursion?

 Models in S-Plus and R 14

However this approach does have its uses with
intrinsically recursive problems. For example, listing
all possible subsets of size r from n objects.

Example code
subsets <- function(n, r, v = 1:n) {

 if(r <= 0) NULL else

 if(r >= n) v[1:n] else

 rbind(cbind(v[1], subsets(n - 1, r - 1, v[-1])),

 subsets(n - 1, r , v[-1]))

}

The idea behind this function is that if n = r, there is
only one possible subset, the whole vector.
Otherwise pick one element from the set. Then you
need to look at all subsets with that element
combined with subsets of size r – 1 from the
remaining n – 1 elements plus the subsets of size r
taken from the other n – 1 elements.

Note that this is not the best way to write a recursive
function as it you change the name, the function will
break (subsets won’t exist any more). See pages 49-
50 in S Programming by Venables and Ripley. A
better approach uses the Recall function.

 Models in S-Plus and R 15

Vectorized functions

The standard S functions, such as sin, log, dnorm,
etc, have the useful property that if the first
argument is a vector, the result is a vector of the
same size. Note that a similar result will also happen
with matrices and higher level arrays.

For example in S-Plus try sin(iris) or in R try
data(iris3); sin(iris3). You’ll see that the
result is a 3 dimensional array, the same as iris (or
iris3).

When designing your own functions, you should
strive to do the same thing. Often it is easy to do, as
where possible you should base your own functions
on the built in vectorized functions.

For example, probably the best version of the
factorial function you could write is

fact <- function(x) gamma(x+1)

Since it uses the built in function gamma, all of its
built-in error checking will be there. Also it is
automatically vectorized. However an example of
how you could write a vectorized version of the
factorial function is

 Models in S-Plus and R 16

fact.vec <- function(x) {

 size <- dim(x)

 fact <- NULL

 for(i in x) {

 temp <- 1

 for(j in 1:i)

 temp <- temp * j

 fact <- c(fact,temp)

 }

 array(fact, dim=size)

}

> fact.vec(mat)

 [,1] [,2] [,3]
[1,] 1 120 362880
[2,] 2 720 3628800
[3,] 6 5040 39916800
[4,] 24 40320 479001600

> fact(mat)

 [,1] [,2] [,3]
[1,] 1 120 362880
[2,] 2 720 3628800
[3,] 6 5040 39916800
[4,] 24 40320 479001600

 Models in S-Plus and R 17

Loops vs vectorized calculations

Where possible, you generally want to avoid using
loops, particularly in S-Plus. (The situation isn’t
quite as bad in R). The reason is similar to why you
don’t want to write recursive functions.

Lets look at the Fisher Iris data set, getting summary
statistics for the different species and measurement.

> meanmat<-matrix(0,ncol=3,nrow=4,dimnames
= list(c("Sepal L", "Sepal W", "Petal L",
"Petal W"), c("Setosa", "Versicolor",
"Virginica")))

> for (i in 1:4)

+ for (j in 1:3)

+ meanmat[i,j] <-mean(iris3[,i,j])

> meanmat

 Setosa Versicolor Virginica

Sepal L 5.006 5.936 6.588

Sepal W 3.428 2.770 2.974

Petal L 1.462 4.260 5.552

Petal W 0.246 1.326 2.026

 Models in S-Plus and R 18

This can be done much easier with apply.

> apply(iris3,c(2,3),mean)

 Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588

Sepal W. 3.428 2.770 2.974

Petal L. 1.462 4.260 5.552

Petal W. 0.246 1.326 2.026

The general form of apply is

apply(array, margins, function, …)

margins are the dimensions that you want to apply
the function over. For the iris dataset, the first
dimension corresponds to observation number, the
second corresponds to variable, and the third is the
species. The example says to fix each combination of
variable and species and average the observations for
each combination.

If you just want to average for each variable
(averaging over observations and species) use the
following

> apply(iris3,2,mean)

Sepal L. Sepal W. Petal L. Petal W.

5.843333 3.057333 3.758000 1.199333

 Models in S-Plus and R 19

Note additional arguments can be passed onto the
function. For example

> apply(iris3,2,mean,trim=0.1)

Sepal L. Sepal W. Petal L. Petal W.

5.808333 3.043333 3.760000 1.184167

which will calculate the 10% trimmed mean for each
variable.

Note that for linear computations, such as
computing the mean, using matrix multiplication can
be even more efficient. For example, instead of
apply(iris3,c(2,3),mean), the following could
also have been used

> matrix(rep(1/50,50) %*% matrix(iris3,nrow=50),
+ nrow=4, dimnames = dimnames(iris3)[-1])

 Setosa Versicolor Virginica

Sepal L. 5.006 5.936 6.588

Sepal W. 3.428 2.770 2.974

Petal L. 1.462 4.260 5.552

Petal W. 0.246 1.326 2.026

While more efficient, I’ll often use apply, since its
more readable. Also it may take longer to figure out
how to do it more efficiently that the improvement in
calculation time.

 Models in S-Plus and R 20

In addition to apply there are 3 similar function for
different data structures, tapply, lapply, sapply.

tapply when you have a vector and a labeling factor
or factors. For example the get the variances of
log(CL) in the crabs data, the following can be used

> tapply(lcrabs[,3],sex,var)

 Female Male

0.05199732 0.05906848

> tapply(lcrabs[,3],list(sex,sp),var)

 Blue Orange

Female 0.04914712 0.0319532

Male 0.06104549 0.0568927

The general form of the function is

tapply(vector, label, function, …)

It is possible to use your own functions with apply,
tapply, etc, with the function even defined in the call.

> tapply(lcrabs[,3],list(sex,sp),
 function(x) sqrt(var(x)/length(x)))

 Blue Orange

Female 0.03135191 0.02527972

Male 0.03494152 0.03373209

 Models in S-Plus and R 21

The last two, lapply and sapply are used with lists (&
dataframes)

For example

> lapply(cars93,function(x) class(x))

$Manu

[1] "factor"

$Model

[1] "factor"

$Type

[1] "factor"

$MinPrice

[1] "numeric"

$MidPrice

[1] "numeric"

and so on

The function lapply will always return a list, whereas,
sapply, which does the same calculations, will try to
return a vector if possible. For example

 Models in S-Plus and R 22

> sapply(cars93,mean)

 Manu Model Type MinPrice MidPrice

 NA NA NA 17.1258065 19.5096774

 CityMPG HighMPG AirBags DriveTra Cylinder

 22.3655914 29.0860215 0.8064516 0.9354839 NA

 Horse RPM EngRevMi Manual FuelTank

 143.8279570 5280.6451613 2332.2043011 0.6559140 16.6645161

> lapply(cars93,mean)

$Manu

[1] NA

$Model

[1] NA

$Type

[1] NA

$MinPrice

[1] 17.12581

$MidPrice

[1] 19.50968

$MaxPrice

[1] 21.89892

 Models in S-Plus and R 23

Note while it is desirable to deal with vectorized
calculations, it is not always possible and loops must
be used. An example of this is the Gibbs sampler,
which is an iterative approach for generating samples
from complicated joint distributions. Suppose you
wanted to generate samples from the joint density
f(x,y,z), but f is complicated. A scheme that will
generate (dependent) samples (asymptotically) is

initialize x, y, and z as x(0), y(0), and z(0)

for i = 1 to n {

 draw x(i) from f(x|y(i-1), z(i-1))

 draw y(i) from f(y|x(i), z(i-1))

 draw z(i) from f(x|x(i), y(i))

}

The realizations (x(i), y(i), z(i)) form a Markov Chain
with a stationary distribution with density f(x,y,z).

This approach, and its extensions which are known
generally as Markov Chain Monte Carlo (MCMC), has
opened many areas of statistics in the last 20 years,
in particular Bayesian analysis. The techniques
actually go back to the Manhattan project during
WW2.
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A.
Teller and E. Teller J. Chem. Phys 21 (1953) 1087.

