
 Models in S-Plus and R 1 

Programming in S 

 

Functions 

Vectorized calculations vs loops 

 

As we’ve seen S is a full featured, object-oriented 
programming language.  Previously I’ve shown how 
you can write scripts and running them from within 
S-Plus and R.  Similarly, it is easy to write your own 
functions in S-Plus/R 

 

General structure of a function 

 

function.name <- function(args) { 

  commands 

  function.output 

} 
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Function arguments 

As with any high level language, you need to give the 
arguments to your function.  Well sort of. 

The argument list will usually be of the form 

ar g1,  ar g2,  ar g3 = def aul t 3,  ar g4 = def aul t 4 ,  … 

As we’ve seen in the past, it is possible to give some 
arguments default values, as has been done with 
ar g3 and ar g4.  The first two arguments, ar g1 and 
ar g2, since they do not have default settings, they 
must be given.  In addition, it is possible to pass in 
extra arguments that do not need to be specified 
ahead of time with “…”. 

The order that the arguments are listed is the order 
expected when the function is called.  For example 

t est f un <-  f unct i on( x,  y)   

 {  x /  y }  

> t est f un( 1, 2)  

[ 1]  0. 5 

> t est f un( 2, 1)  

[ 1]  2 

> t est f un( y=2, x=1)  

[ 1]  0. 5 
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> testfun(1) 

Error in testfun(1) : Argument "y" is 
missing, with no default 

testfun2 <- function(x, y = 1, z) 

 { x * y + z} 

> testfun2(2,1,4) 

[1] 6 

> testfun2(2,z=4) 

[1] 6 

> testfun2(2,,4)    # not recommended 

[1] 6 
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Local vs global variables 

Most of the time variables inside functions are 
treated locally.  That is, assignments made inside the 
function do not affect what is stored 

succ <- function(n){ 

  n <- n+1 

  n 

} 

> n 

[1] 2 

> succ(n) 

[1] 3 

> n 

[1] 2 

 

When a function is called and it comes across 
something that hasn’t been given as an argument or 
defined earlier in the function it will go through the 
search path until it finds the object 
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testfun3 <- function(x, y = 1, z) 

 { x * y + z * n} 

> testfun3(2,z=4) 

[1] 10 

While it does have its uses, it can be dangerous and 
it is usually not recommended.  Passing the values in 
as arguments is usually the way to go. 

In addition it possible for assignments not to be 
local, but global.  You can reassign values in the first 
level of the search path from within a function.  For 
example 

succ2 <- function(n){ 

  x <- n+1 

  n <<- x 

  x 

} 

> n 

[1] 4 

> succ2(n) 

[1] 5 

> n 

[1] 5 
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This is very dangerous.  DO NOT DO THIS!!!!!  
Especially with any functions you might pass onto 
somebody else.  You might end up trashing some 
object you need without realizing it. 

 

Control structures (for, if, while, etc) 

The standard control structures in most high level 
languages are available in S-Plus/R.  The include if 
statements, for loops, while loops, etc 

if: 

The basic structure is 

if (condition) true branch commands 

  else false branch commands 

For example  
fact2<-function(x) { 

  if(x != trunc(x)) {stop("x is not an integer")} 

  else {  

    fact<-1 

    for(i in 1:x) 

      fact<- fact * i 

  } 

  fact 

} 
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In the if statement, the condition should be a single 
logical value.  If you are dealing with vectors, you 
may not get what you want.  An alternative in this 
case is i f el se.  For example 

> y<-  ( - 1: 4)  

> y l ogy <-  i f el se( y<=0,  0,  y* l og( y) )  

War ni ng message:   

NaNs pr oduced i n:  l og( x)   

> y l ogy 

[ 1]  0. 000000 0. 000000 0. 000000 1. 386294 3. 295837 
5. 545177 

swi t ch: 

When there are more than 2 conditions that you 
need to deal with, such as with 

r esul t  <-  i f  ( t est  == “ Levene” )  l evene( y,  f )  

  el se 

    i f  ( t est  == “ Cochr an” )  cochr an( y,  f )  

      el se bar t l et t ( y,  f )  

it may be easier to deal with as 
r esul t  <-  swi t ch( t est ,  

    Levene = l evene( y,  f )  

    Cochr an = cochr an( y,  f )  

    Bar t l et t  = Bar t l et t ( y,  f ) )  
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for: 

The basic structure is 

for ( variable in sequence) commands 

fact1<-function(x) { 

  fact<-1 

  for(i in 1:x) 

   fact<- fact * i 

  fact 

} 

Note that the sequence doesn’t have to be a vector.  
It could be a list or a data frame, as with 

> for (i in lcrabs) 

+  print(summary(i)) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.974   2.557   2.744   2.720   2.893   3.140  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.872   2.398   2.549   2.523   2.660   3.006  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  2.688   3.306   3.469   3.443   3.617   3.863  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  2.839   3.450   3.605   3.570   3.738   4.000  



 Models in S-Plus and R 9 

while: 

while (condition) commands 

fact3 <- function(x) { 

  fact <- 1;  i <- 1 

  while (i < x) { 

    i <- i+1 

    fact <- fact * i 

  } 

  fact} 

repeat: 

repeat commands 

fact4 <- function(x) { 

  fact <- 1;  i <- 1 

  repeat { 

    i <- i+1 

    fact <- fact * i 

    if (i == x) break 

  } 

  fact} 

The commands in the repeat loop will continue until 
a break is seen which will hop you out of the loop. 
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Error checking 

When writing functions, it is usually a good idea to 
check to make sure the input arguments are value.  
For example, with the factorial functions shown 
before as all based on a single, integer being input. 

facte <- function(x) { 

  if (length(x)>1) warning("x should be of 
length 1, only first component used") 

  if (x[1] <= 0) stop("x must be positive") 

  prod(1:x[1]) 

} 

> facte(1:4) 

[1] 1 

Warning message:  

x should be of length 1, only first component 
used in: facte(1:4)  

> facte(-2) 

Error in facte(-2) : x must be positive 

warning will allow the function to continue and 
return output.  stop, however will terminate the 
function, yielding no output. 

Printing output in functions 
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Sometimes it is useful to print results of calculations 
from within a function, such as during debugging. 

For example 

testprint1 <- function(x) { 

  for (i in 1:x) 

    c(i, fact(i)) 

} 

> testprint1(4) 

> 

You must explicitly print the objects as with 

testprint2 <- function(x) { 

  for (i in 1:x) 

    print(c(i,fact(i))) 

} 

> testprint2(4) 

[1] 1 1 

[1] 2 2 

[1] 3 6 

[1]  4 24 
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The functions cat and format is also useful, 
particularly with formatted output. 

testprint3 <- function(x) { 

  for (i in 1:x) 

    cat("x = ",i,", ",i,"! = ",fact(i),"\n", 
        sep="") 

} 

> testprint3(4) 

x = 1, 1! = 1 

x = 2, 2! = 2 

x = 3, 3! = 6 

x = 4, 4! = 24 
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Recursive functions 

Another approach that can be useful is that of 
recursive functions.  For example, the factorial 
function can be written as 

 x! = x × (x – 1)! 

This can be written as 

factr <- function(x) { 

  if(x != trunc(x))  

    stop("x is not an integer") 

  if (x == 1) factr <- 1 

  else factr <- factr(x-1) * x 

  factr 

} 

Note that this approach is usually slow and memory-
intensive.  Each time the function is called, a copy of 
the important information is made and passed onto 
the new call.  The function factr will only handle x up 
to 82.  With x � 83, 

> factr(82) 

[1] 4.753643e+122 

> factr(83) 

Error in factr(x - 1) : evaluation is nested too 
deeply: infinite recursion? 
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However this approach does have its uses with 
intrinsically recursive problems.  For example, listing 
all possible subsets of size r from n objects. 

Example code 
subsets <- function(n, r, v = 1:n) { 

  if(r <= 0) NULL else 

  if(r >= n) v[1:n] else 

  rbind(cbind(v[1], subsets(n - 1, r - 1, v[-1])), 

                    subsets(n - 1, r    , v[-1])) 

} 

The idea behind this function is that if n = r, there is 
only one possible subset, the whole vector.  
Otherwise pick one element from the set.  Then you 
need to look at all subsets with that element 
combined with subsets of size r – 1 from the 
remaining n – 1 elements plus the subsets of size r 
taken from the other n – 1 elements. 

 

Note that this is not the best way to write a recursive 
function as it you change the name, the function will 
break (subsets won’t exist any more).  See pages 49-
50 in S Programming by Venables and Ripley.  A 
better approach uses the Recall function. 
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Vectorized functions 

The standard S functions, such as sin, log, dnorm, 
etc, have the useful property that if the first 
argument is a vector, the result is a vector of the 
same size.  Note that a similar result will also happen 
with matrices and higher level arrays. 

For example in S-Plus try sin(iris) or in R try 
data(iris3); sin(iris3).  You’ll see that the 
result is a 3 dimensional array, the same as iris (or 
iris3). 

When designing your own functions, you should 
strive to do the same thing.  Often it is easy to do, as 
where possible you should base your own functions 
on the built in vectorized functions. 

For example, probably the best version of the 
factorial function you could write is 

fact <- function(x) gamma(x+1) 

Since it uses the built in function gamma, all of its 
built-in error checking will be there.  Also it is 
automatically vectorized.  However an example of 
how you could write a vectorized version of the 
factorial function is 
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fact.vec <- function(x) { 

  size <- dim(x) 

  fact <- NULL 

  for(i in x) { 

    temp <- 1 

    for(j in 1:i) 

      temp <- temp * j 

    fact <- c(fact,temp) 

  } 

  array(fact, dim=size) 

} 

> fact.vec(mat) 

     [,1]  [,2]      [,3] 
[1,]    1   120    362880 
[2,]    2   720   3628800 
[3,]    6  5040  39916800 
[4,]   24 40320 479001600 

> fact(mat) 

     [,1]  [,2]      [,3] 
[1,]    1   120    362880 
[2,]    2   720   3628800 
[3,]    6  5040  39916800 
[4,]   24 40320 479001600 
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Loops vs vectorized calculations 

Where possible, you generally want to avoid using 
loops, particularly in S-Plus.  (The situation isn’t 
quite as bad in R).  The reason is similar to why you 
don’t want to write recursive functions. 

Lets look at the Fisher Iris data set, getting summary 
statistics for the different species and measurement. 

> meanmat<-matrix(0,ncol=3,nrow=4,dimnames 
= list(c("Sepal L", "Sepal W", "Petal L", 
"Petal W"), c("Setosa", "Versicolor", 
"Virginica"))) 

> for (i in 1:4) 

+ for (j in 1:3) 

+   meanmat[i,j] <-mean(iris3[,i,j]) 

> meanmat 

        Setosa Versicolor Virginica 

Sepal L  5.006      5.936     6.588 

Sepal W  3.428      2.770     2.974 

Petal L  1.462      4.260     5.552 

Petal W  0.246      1.326     2.026 
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This can be done much easier with apply. 

> apply(iris3,c(2,3),mean) 

         Setosa Versicolor Virginica 

Sepal L.  5.006      5.936     6.588 

Sepal W.  3.428      2.770     2.974 

Petal L.  1.462      4.260     5.552 

Petal W.  0.246      1.326     2.026 

The general form of apply is 

apply(array, margins, function, …) 

margins are the dimensions that you want to apply 
the function over.  For the iris dataset, the first 
dimension corresponds to observation number, the 
second corresponds to variable, and the third is the 
species.  The example says to fix each combination of 
variable and species and average the observations for 
each combination. 

If you just want to average for each variable 
(averaging over observations and species) use the 
following 

> apply(iris3,2,mean) 

Sepal L. Sepal W. Petal L. Petal W.  

5.843333 3.057333 3.758000 1.199333 
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Note additional arguments can be passed onto the 
function.  For example 

> apply(iris3,2,mean,trim=0.1) 

Sepal L. Sepal W. Petal L. Petal W.  

5.808333 3.043333 3.760000 1.184167 

which will calculate the 10% trimmed mean for each 
variable. 

Note that for linear computations, such as 
computing the mean, using matrix multiplication can 
be even more efficient.  For example, instead of 
apply(iris3,c(2,3),mean), the following could 
also have been used 

> matrix(rep(1/50,50) %*% matrix(iris3,nrow=50), 
+   nrow=4, dimnames = dimnames(iris3)[-1]) 

         Setosa Versicolor Virginica 

Sepal L.  5.006      5.936     6.588 

Sepal W.  3.428      2.770     2.974 

Petal L.  1.462      4.260     5.552 

Petal W.  0.246      1.326     2.026 

While more efficient, I’ll often use apply, since its 
more readable.  Also it may take longer to figure out 
how to do it more efficiently that the improvement in 
calculation time. 
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In addition to apply there are 3 similar function for 
different data structures, tapply, lapply, sapply. 

tapply when you have a vector and a labeling factor 
or factors.  For example the get the variances of 
log(CL) in the crabs data, the following can be used 

> tapply(lcrabs[,3],sex,var) 

    Female       Male  

0.05199732 0.05906848  

> tapply(lcrabs[,3],list(sex,sp),var) 

             Blue    Orange 

Female 0.04914712 0.0319532 

Male   0.06104549 0.0568927 

The general form of the function is 

tapply(vector, label, function, …) 

It is possible to use your own functions with apply, 
tapply, etc, with the function even defined in the call. 

> tapply(lcrabs[,3],list(sex,sp), 
  function(x) sqrt(var(x)/length(x))) 

             Blue     Orange 

Female 0.03135191 0.02527972 

Male   0.03494152 0.03373209 
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The last two, lapply and sapply are used with lists (& 
dataframes) 

For example 

> lapply(cars93,function(x) class(x)) 

$Manu 

[1] "factor" 

$Model 

[1] "factor" 

$Type 

[1] "factor" 

$MinPrice 

[1] "numeric" 

$MidPrice 

[1] "numeric" 

and so on 

The function lapply will always return a list, whereas, 
sapply, which does the same calculations, will try to 
return a vector if possible.  For example 
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> sapply(cars93,mean) 

        Manu        Model         Type     MinPrice     MidPrice      

          NA           NA           NA   17.1258065   19.5096774    

     CityMPG      HighMPG      AirBags     DriveTra     Cylinder       

  22.3655914   29.0860215    0.8064516    0.9354839           NA     

       Horse          RPM     EngRevMi       Manual     FuelTank       

 143.8279570 5280.6451613 2332.2043011    0.6559140   16.6645161     

> lapply(cars93,mean) 

$Manu 

[1] NA 

$Model 

[1] NA 

$Type 

[1] NA 

$MinPrice 

[1] 17.12581 

$MidPrice 

[1] 19.50968 

$MaxPrice 

[1] 21.89892 
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Note while it is desirable to deal with vectorized 
calculations, it is not always possible and loops must 
be used.  An example of this is the Gibbs sampler, 
which is an iterative approach for generating samples 
from complicated joint distributions.  Suppose you 
wanted to generate samples from the joint density 
f(x,y,z), but f is complicated.  A scheme that will 
generate (dependent) samples (asymptotically) is 

initialize x, y, and z as x(0), y(0), and z(0) 

for i = 1 to n { 

  draw x(i) from f(x|y(i-1), z(i-1)) 

  draw y(i) from f(y|x(i), z(i-1)) 

  draw z(i) from f(x|x(i), y(i)) 

} 

The realizations (x(i), y(i), z(i)) form a Markov Chain 
with a stationary distribution with density f(x,y,z).   

This approach, and its extensions which are known 
generally as Markov Chain Monte Carlo (MCMC), has 
opened many areas of statistics in the last 20 years, 
in particular Bayesian analysis.  The techniques 
actually go back to the Manhattan project during 
WW2. 
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. 
Teller and E. Teller J. Chem. Phys 21 (1953) 1087. 


